Janusz Cofala Atmospheric Pollution and Economic Development Program

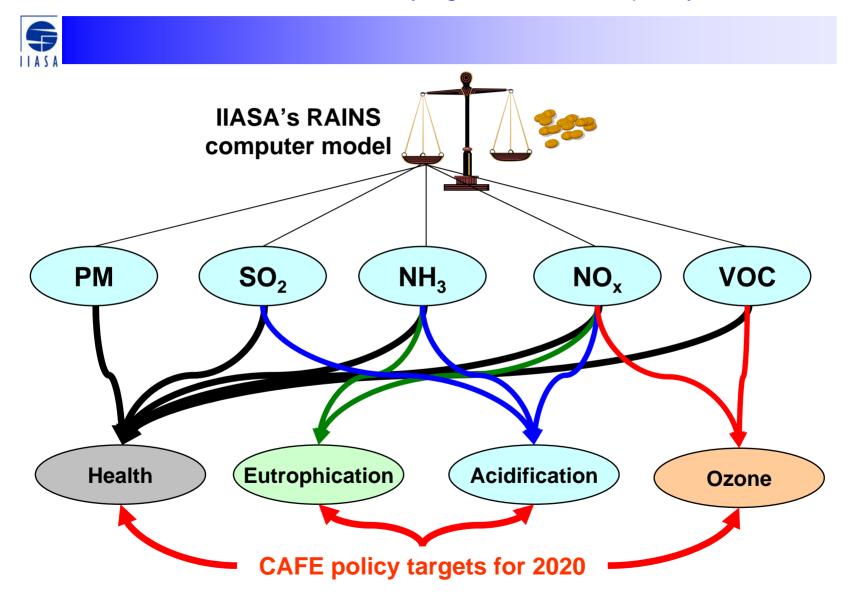
Integrated Assessment Model GAINS Implementation for EECCA countries

Air pollution problems

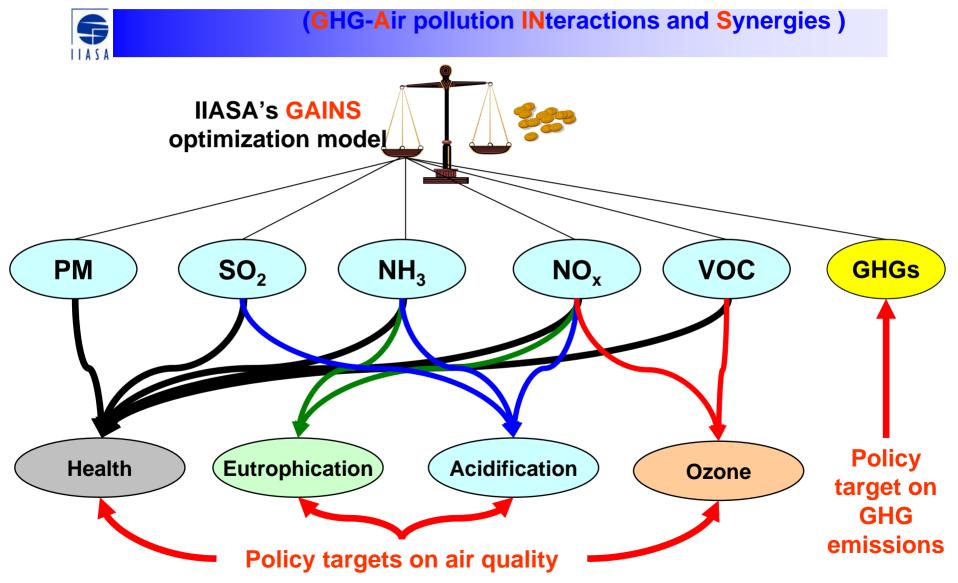
- Ground-level ozone
 - Concentrations 3 4 times above pre-industrial levels
 - Impaired lung function and other respiratory problems for children and asthmatics
 - Damage to sensitive plants (agricultural crops, trees)
- Acidification
 - Leaching of nutrients, release of toxic metals
 - Damage to plant and animal life in lakes
- Eutrophication
 - Excess nitrogen deposition in terrestrial and aquatic ecosystems, threat to bio-diversity
- PM exposure
 - Health impacts

Air pollution and greenhouse gases Critical linkages

- Emission originate from the same sources
- Aerosols/small particles cause health impacts <u>and</u> influence radiative forcing
- Tropospheric ozone damages health and vegetation <u>and</u> causes radiative forcing


A multi-pollutant/multi-effect problem extended towards radiative forcing

	SO ₂	NO _x	NH ₃	VOC	Primary PM+BC	CH ₄	CO ₂ + GHGs
Acidification	√	√	√				
Eutrophication		\checkmark	\checkmark				
Ground-level ozone		√		\checkmark		√	
Health impacts via sec. aerosols	√	\checkmark	\checkmark	\checkmark	\checkmark		
Radiative forcing	,	1	1	1	1	\checkmark	\checkmark
via aerosols via OH	\	√ √	V	√ √	√	√	


Multi-pollutant/multi-effect analysis

for identifying cost-effective policy scenarios

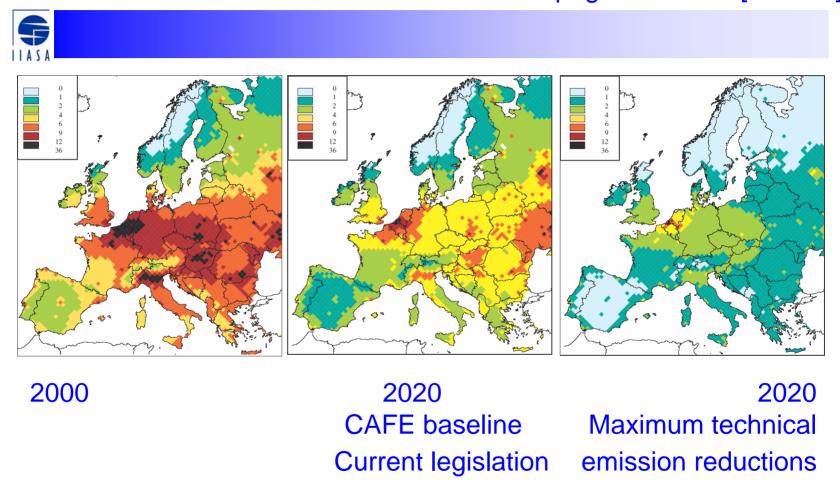
The GAINS approach

for identifying cost-effective emission control strategies

GAINS: GHG-Air pollution INteractions and Synergies

- Focus on:
 - Cost-effective mitigation measures and co-benefits
 - Policy-relevant scales of analysis
 - up to 2030
 - country-by- country
- Extension of RAINS model for air pollution to GHGs:
 - Model the chain of (air) pollution from sources to effects
 - GHG emissions consistent with UNFCCC
 - GHG cost data from reviewed literature
 - Air pollution and cost data reviewed by CAFE stakeholders
 - Assessment of emission reduction potentials and costs:
 - RAINS: SO₂, NO_x, VOC, NH₃, PM (~400 control options)
 - GAINS: CO₂, CH₄, N₂O, HFC, PFC, SF₆ (260 control options)

Policy applications of RAINS/GAINS


Protocols to the UN/ECE Convention on CLRTAP:

- 1994: 2nd S Protocol,
- 1999 Gothenburg Protocol)

Support to EU policies:

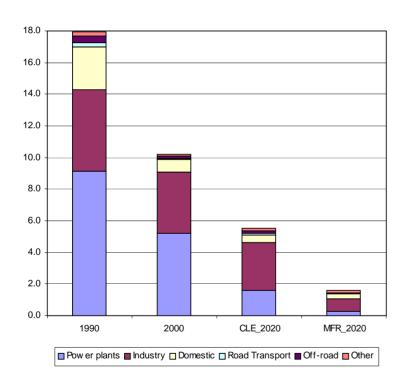
- 1999 NEC Directive,
- 2003 2005 CAFE Programme and TSAP,
- 2007 Revision of NEC Directive

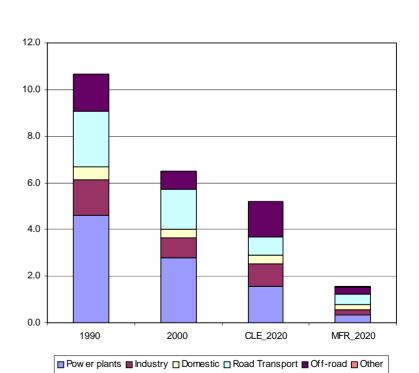
Loss in life expectancy attributable to anthropogenic PM2.5 [months]

Loss in average statistical life expectancy due to identified anthropogenic PM2.5 Calculations for 1997 meteorology

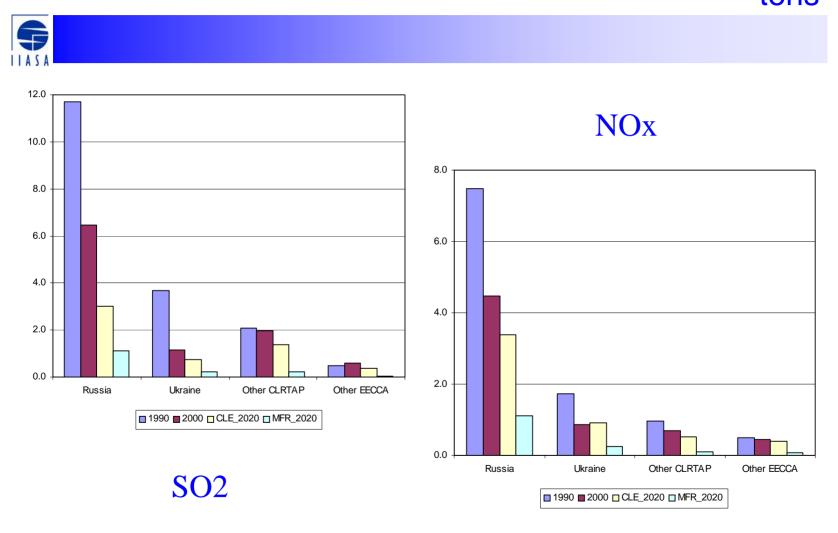
GAINS coverage

- All European countries plus Turkey available
- Implementation for China, India and Pakistan underway
- Other countries:
 - assessment within a study on global projections of air pollutants
 - countries/ world regions treated in a simplified way
 - updates and extensions planned


Inclusion of EECCA countries


- Russia, Belarus, Ukraine preliminary assessment (partly) in collaboration with national scientists
- Parties to CLRTAP (Moldova, Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyz Republic): national scenarios based on scaling down the IPPC SRES B2 scenario, no national partners
- Other countries (Tajikistan, Turkmenistan, Uzbekistan): only aggregated assessment, no national partners

EECCA: Emissions of SO2 and NOx by sector, million tons



NOx

SO₂

Emissions of SO2 and NOx by country group, million tons

EECCA compared with EU and world emissions

		SO2		NOx		
	2000	2020	2000	2020		
World	15%	7%	13%	7%		
EU	62%	100%	59%	70%		

Data needs

- Macroeconomic projections
- Scenarios of emission generating activities:
 - Energy scenarios
 - Development of transport
 - Agricultural projections (livestock numbers)
 - Activities of heavy industries
 - Growth of NMVOC generating sectors
- Fuel quality, country-specific emission and cost factors
- 'Current legislation' penetration of control technologies
- Potentials for switching to energy efficient and low CO2 technologies

Data collection

- Close collaboration with national experts necessary
- Templates with input data available
- Names of model categories in English but (very rough and simplified) translation to Russian available
- Data and results can be viewed via the internet
- Bilateral consultations important, they improve understanding
- Timing needs to be synchronized with the work on review of the Gothenburg Protocol

PLEASE HELP!!!

More information:

www.iiasa.ac.at/rains

On-line model, (air pollutants, CO2 emissions)

http://www.iiasa.ac.at/web-apps/apd/RainsWeb

Documentation:

CO2: http://www.iiasa.ac.at/Admin/PUB/Documents/IR-05-053.pdf

CH4: http://www.iiasa.ac.at/Admin/PUB/Documents/IR-05-054.pdf

N2O: http://www.iiasa.ac.at/Admin/PUB/Documents/IR-05-055.pdf

F-gases: http://www.iiasa.ac.at/Publications/Documents/IR-05-056.pdf

Air pollutants: http://www.iiasa.ac.at/rains/databases.html?sb=9