Markus Amann

International Institute for Applied Systems Analysis (IIASA)

Combined strategies to control climate change and air pollution

Some initial perspectives from the GAINS model

Linkages between air pollution and climate: What can we quantify?

117

• Linkages between emissions

Air pollutant emissions as a function of CO₂ mitigation

◆ SO2 ■ NOx ▲ PM25

EU-25, 2020

ILAS

Linkages between air pollution and climate: What can we quantify?

• Linkages between emissions

• Linkages between emission control costs

Net costs for further air pollution control as a function of CO₂ mitigation

Linkages between air pollution and climate: What can we quantify?

• Linkages between emissions

• Linkages between emission control costs

• Linkages in the atmosphere

Radiative forcing by aerosols: past & future

(direct & indirect effects)

Radiative forcing from aerosols

1750 - 2000

- 1.95 W/m²

JRC – Ispra

With maximum technical AP reductions 2000 - 2030 MFR + 1.12 W/m²

-6.0 -4.5 -3.0 -1.5 0 1.5 3.0 4.5 6.0 W/m²

Radiative forcing from greenhouse gases

1750 - 2000 + 2.60 W/m² 2000 – 2050 B1 + 1.90 W/m² Linkages between air pollution and climate: What can we quantify?

• Linkages between emissions

• Linkages between emission control costs

• Linkages in the atmosphere

• Linkages between impacts

Ozone changes between 1990s and 2020s climates, for constant 2030 emissions Sources: Dentener et al. EST 2006; Stevenson et al. JGR, 2005

• Incomplete assessment of benefits (co-benefits ignored)

Impact indicators for different GHG projections EU-25, current legislation baseline 2020

■ With 90€ carbon price (-8% CO2)

- Incomplete assessment of benefits (co-benefits ignored)
- Double-counting of costs

Costs for AP and GHG mitigation in 2020 EU-25, preliminary GAINS estimates

■ Costs for current legislation on air pollution ■ Additional costs for TSAP ■ Additional costs for the CO2 reduction

- Incomplete assessment of benefits (co-benefits ignored)
- Double-counting of costs
- Overlooking the "2nd best" options

Costs of electricity generation Andra Pradesh, 2020

□ IGCC ■ Coal costs □ PM control □ SO2 control □ NOx control

- Incomplete assessment of benefits (co-benefits ignored)
- Double-counting of costs
- Overlooking the "2nd best" options
- Running into trade-offs (diesel, bio-fuels)

Differences in premature deaths attributable to PM2.5, compared to baseline (cases/year)

- Incomplete assessment of benefits (co-benefits ignored)
- Double-counting of costs
- Overlooking the "2nd best" options
- Running into trade-offs (diesel, bio-fuels, aerosols)
- Incomplete assessment of mitigation potential

Further reduction potential offered by the GAINS approach (EU-25, 2020)

Maximum RAINS reduction Additional reduction in GAINS Remaining emissions

If independent AP and CC strategies are analyzed together ...

- + Correct assessment of costs
- + Correct assessment of benefits
- ± Discovery of trade-offs, but no prevention
- Overlooking the 2nd best options

If AP and CC strategies are <u>designed together</u>...

- + Correct assessment of costs
- + Correct assessment of benefits
- + Discovery and prevention of trade-offs
- + Increased cost-effectiveness by utilizing the 2nd best options

Cost savings from an integrated approach Provisional GAINS estimates, EU-25, 2020

If AP and CC strategies are <u>designed</u> together ...

- + Correct assessment of costs
- + Correct assessment of benefits
- + Discovery and prevention of trade-offs
- + Increased cost-effectiveness by utilizing the 2nd best options

- But: increased analytical and institutional complexity

Conclusions

- Separate design and analysis of AP and GHG mitigation strategies is likely to result in inefficient solutions
- Combined analysis of separate strategies: Correct accounting, but possibly inefficient allocation
- Combined analysis and joint strategies: Efficient allocation, but institutional and analytical complexities