Air Quality and Climate Change: A UK Perspective

A report by the Air Quality Expert Group

John Rea

Department for Environment, Food and Rural Affairs, UK

The Air Quality Expert Group (AQEG)

- Independent expert group, funded by UK Government
- Set up in 2001 to provide independent scientific advice on air quality
- Reports:
 - NO₂ in the UK (2004)
 - PM in the UK (2005)
 - Air Quality and Climate Change (30 March 2007)
 - Trends in Primary NO₂ in the UK (Summer 2007)
 - Ozone in the UK (draft summer 2007)

Air Quality and Climate Change: A UK Perspective

AQEG asked to:

- Examine linkages between mitigation policies for AQ and CC
- Examine the scientific background to these interactions
- Identify:
 - Synergies where measures to improve AQ can help ameliorate CC
 - Trade-offs where policy measures in the two areas act in opposition

Background

- AQ and CC policy areas developed independently
- Different geographical scales and lifetimes of pollutants
- Many of the same sources e.g. power generation
- Significant reductions in AQ pollutants, only small reductions in CO₂

Measures that could increase AQ & CC emissions

Measure

Increased demand for products/services

Transport modal shifts

Increased use of coal for energy generation

Certain use of biofuels?

Effect

For example aircraft – efficiency gains outweighed by increased demand

Increase in short-haul flights at expense of rail

If used in place of renewables, nuclear or natural gas

 N_2O from fertiliser Import and fuel-chain emissions \uparrow AQ emissions

AQ measures that could increase CC emissions

Measure

Power Generation

Flue gas desulphurisation

Transport

Abatement of AQ emissions

Reduced S in fuel

Effect

Reduced generation efficiency CO₂ formation through wet scrubbing

Efficiency costs \rightarrow increased CO₂ Potential to increase N₂O

Increased refinery CO₂ emissions

CC measures that could increase AQ emissions

Measure

Increased aircraft fuel efficiency

Fuel-switching (transport)

Certain use of biofuels

General Transport fuels

Domestic use

Waste management

Forests as a sink for carbon

Effect

Reduction in CO₂ but increase in NO_x

Increased use of diesel in place of petrol \rightarrow increased NO_x and PM

N-based fertilisers \rightarrow increased NH₃

Increased emissions of AQ pollutants from processing and use

Incineration in place of landfill

Increased biogenic emissions

Measures that could improve AQ & CC emissions

Measure

Power Generation

Fuel switching to low C or renewables

Combined heat and power

Transport

New technologies and fuels Low emissions zones

Efficiency Improvements

Demand management

Conservation

Behavioural change

Reduction in CO₂, SO₂ and NO_x

Reduction in AQ and CC pollutants

Reduce point of use and fuel chain emissions

Incentivise more efficient vehicles

Proportionate reduction in AQ and CC pollutants Benefits can be reduced through

increased demand

Key Findings – Mitigation measures

- Comparing AQ and CC problematic
 - No common metric
 - Seldom considered together
- Need for lifecycle analysis
- Measures that result in the biggest wins:
 - Reduction in demand
 - Efficiency gains
- These can be achieved in many ways including:
 - Demand management
 - Improved technology

Report published 30 March 2007

###