

Climate change and energy policies in the northern hemisphere

Implications to air pollution?

Tom van Ierland

DG ENV

Unit C1 Climate Strategy, international negotiation and monitoring of EU action

1. The science of climate change

Findings IPCC AR4:

- During the last 100 years the Earth has warmed by 0.74°C on average
- It is "extremely unlikely" that this warming was due to natural climate variability alone.
- best estimates of the projected further rise by 2100 range from 1.8 to 4.0°C if no further action is taken
- Extreme weather events have increased and regional climate patterns are changing

Temperature go well above the EU's 2°C objective without action on climate change

Will temperature change effect the impacts of local air pollution?

Projected Patterns of Precipitation Changes

Source: IPCC 2007

2. The scientific case for action

The EU's objective to limit temperature increase to 2°C

Source: Stern Review

The probability to reach the 2°C target

3. Emission scenarios to attain2 degrees Celsius

Global Greenhouse gas emissions to reach the 2°C objective

Source: Malte Meinshausen 2006

The need for global participation

Projected greenhouse gas emissions

(industry and energy, business as usual scenario)

The need for global participation

- The 2°C objective:
 Global GHG emissions need to peak around 2020
- <u>EU & Developed countries need to take the lead!</u>:
 30% GHG emission reduction target by 2020, compared to 1990 levels
- Developing countries:
 Reduced growth
 asap, absolute
 reductions after 2020
- <u>Deforestation</u>: halt within two decades and then reverse

Cost of action is consistent with global economic development

Source: GEM E3

Technologies to deliver GHG emission reductions

3. Scenarios for the EU

EU Spring Council Conclusions: Objectives Climate Change and Energy

- Meeting the 2°C objective (Top down):
 - *EU:* In the international negotiations set forward the collective GHG reduction target of 30 % by 2020 for developed countries (compared to 1990 levels).
 - EU ready to take on itself a 30% target if successful outcome.
 - EU: A firm independent commitment to achieve at least 20% GHG emission reductions by 2020 (compared to 1990)
- Tools (Bottom up):
 - "An Energy Policy for Europe"
 - GHG policies including Emissions trading
 - Global carbon market

Energy Policy for Europe will have specific impacts on all air pollutants

- Renewable energy: 20% objective by 2020
 - o includes minimum biofuels target of 10% by 2020
- Energy efficiency (eg. Cars: Co2 & cars, fuel quality directive):
 - o to be improved by 20% by 2020
- Sustainable power generation from fossil fuels: aiming at near-zero emissions of new plants by 2020
- New steps to reach internal market better interconnections and options for unbundling and regulatory powers:
 - o important for functioning EU ETS
 - o decrease hurdles for renewables
- Nuclear: Member States' choice
- Towards a European strategic energy technology plan

Impacts Climate Policies

Source: Poles Model

Co-benefit EU Climate Change Policies on Air Pollution (Gains)

 Health benefits in the EU from reduced air pollution are substantial, up to € 48 billion per year by 2020

Co-benefits from Climate Change Policies		
	Reduction compared	
	to 2020 baseline	
	emissions	
CO2	-9.31%	-22.75%
SO2	-5.90%	-12.11%
NOx	-2.30%	-6.08%
PM2.5	-3.15%	-5.94%

Source: RAINS CAFE models

4. Scenarios for Other Regions

Impacts Climate Policies

Source: Poles Model

Penetration of carbon capture and geological sequestration in the energy sector until 2050

Source: Poles Model

Emission standards for gasoline vehicles Current legislation (as of early 2005)

Source: IIASA, Cofala et al., 2005

More information on how to...

get to grips with climate change

http://ec.europa.eu/environment/climat/future_action.htm

http://ec.europa.eu/energy/energy_policy/index_en.htm