California's Air Pollution and Climate Change Policies

Bart Croes, Chief Research Division

Control policy drivers ...

California's Air Quality Problem

24 million gasoline-powered vehicles 1.3 million diesel-fueled vehicles and engines 35 million people Unique geography and meteorology confine air pollutants

Over 90% of Californians breath unhealthy air

California's Disproportionate Air Pollution Exposure

8-Hour Ozone (NAAQS = 160 μg/m³) **Annual PM2.5** (NAAQS = 15 μg/m³)

Population-weighted and minus national ambient air quality standard (NAAQS), based on 2000-2002 data

Air Pollution and Premature Death California Estimates

Pollutant	Averaging Time	Increased Risk in All-Cause Mortality (per 10 µg/m ³) ^e	Threshold or Background (µg/m ³)	Average Annual Exposure (µg/m³) ^d	Annual Deaths ^e
PM2.5	Annual	10% ^a	2.5 to 7	13.5	13,000 to 22,000
PM10	24-hour	0.25% ^b	5	22.3	1000
Ozone	8-hour	0.27% ^c	80	130	1500

^a Median value from "An expert judgment assessment of the concentration-response relationship between PM2.5 exposure and mortality", Industrial Economics, Inc. (2006)

^b "Revised analysis of time-series studies of air pollution and health", HEI Special Report, p.21 (2003)

^c Ostro, Tran and Levy "The health benefits of reduced tropospheric ozone in California", JAWMA (2006)

^d 2003-2005 air quality data, population-weighted

e At least a factor of two uncertainty

California Climate Impacts over the past 100 years

0.7°F (0.4°C) higher temperatures

7 inch sea level rise

12% decrease in fraction of runoff between April and July

snowmelt and spring blooms advanced 2 days/decade since 1955

Cal/EPA-OEHHA, "Environmental Protection Indicators for California" (2002) www.oehha.ca.gov/multimedia/epic/Epicreport.html

Lyell Glacier

Yosemite National Park

1903

2003

Projected Climate Impacts on California, 2070-2099 as compared with 1961-1990

10 9 8	Higher Warming Range (4.5 – 6 °C)	 3 - 4 times as many heat wave days 22 - 30 inches of sea level rise 90% loss in Sierra snowpack 20% increase in energy demand
7 6 5 4	Medium Warming Range (3 – 4.5 °C)	 2.5 - 4 times as many heat wave days 14 - 22 inches of sea level rise 70 - 80% loss in Sierra snowpack 30% decrease in forest yields (pine) 55% increased risk of large forest fires 10% increase in energy demand
3 2 1 0	Lower Warming Range (1.5 – 3 °C)	 2 - 2.5 times as many heat wave days 6 - 14 inches of sea level rise 30 - 60% loss in Sierra snowpack 7 - 14% decrease in forest yields (pine) 10 - 35% increased risk of large forest fires 3 - 6% increase in energy demand

Our Changing Climate: Assessing the Risks to California (2006), www.climatechange.ca.gov

0F

Decrease in Sierra Nevada Snowpack

Increasing GHG Emissions

Our Changing Climate: Assessing the Risks to California (2006), www.climatechange.ca.gov

Implications of Climate Change for Air Quality

California's Major Air Basins

Ozone versus Temperature Riverside, 2003-2005

Ozone versus Temperature Fresno, 2003-2005

Projected Climate Impact on Ozone, 2050 Central California

Steiner et al., "Influence of future climate and emissions on regional air quality in California", JGR (2006)

PM2.5 versus Temperature Fresno, 2003-2005

PM2.5 versus Temperature Riverside, 2006

PM2.5 Response to Climate South Coast Air Basin

Base-case episode features

September 25, 1996 Elevated temperature inversion Cool nights, warm days

Sensitivity study

- 1. Increase background ozone to 60 ppb
- Increase temperature by +5°C, constant RH
- 3. Does not account for future controls or the effect of temperature on emissions.

Results

+30 μg/m³ (~25%) increase in daily peak PM2.5

Kleeman and Cayan (2006)

(f) 24-Hr Average PM2.5 Difference between Basecase and +5 K With Constant RH and 60 ppb Background Ozone

Increase in Background Ozone

Observed trends in background ozone levels in California (Jaffe et al., 2003) Background ozone levels in the Northern Hemisphere (Vingarzan et al., 2004)

Policy response ...

Governor Schwarzenegger's Environmental Targets

50% improvement in air quality from 2003 to 2010

Diesel Engines

75% below 2000 levels by 2010, 85% below by 2020 Replace or retrofit every diesel engine in California

Goods Movement

2001 emission levels by 2010 Diesel PM risk 85% below 2000 by 2020

Greenhouse Gases

By 2010, reduce to 2000 levels (60 MMT, 11% below BAU) By 2012, cap and trade market linked with EU-ETS and RGGI By 2020, reduce to 1990 levels (174 MMT, 30% below BAU) By 2050, reduce to 80% below 1990 levels

Hydrogen Highway

Green Government Buildings

California Global Warming Solutions Act of 2006 (Assembly Bill 32)

GHG Emissions Per Country / Region

Climate Analysis indicators Tool (CAIT US Version 1.0, CAIT version 4.0), World Resources Institute, 2007 (data is for 2001-2002 and includes CO_2 , CH_4 , N_2O , HFCs, PFCs, and SF_6 emissions for countries and CO_2 , CH_4 , N_2O , and F-gases for CA)

California Greenhouse Gas Emissions

CEC, "Inventory of California Greenhouse Gas Emissions and Sinks: 1990-2004" (2006) www.climatechange.ca.gov/policies/greenhouse_gas_inventory/index.html **HFCs**

 CO_2 , CH_4 , N_2O

 CO_2 , N_2O

Comparison of Fuel Economy and GHG Emissions Standards Around the World

Current GHG Reduction Strategies

Annual reductions in CO₂ equivalents (million of tons) by 2020

2006 Climate Action Team Report to the Governor and Legislature *climatechange.ca.gov/climate_action_team/reports/index.html*

GHG Emissions Per Person

Climate Analysis indicators Tool (CAIT US Version 1.0, CAIT version 4.0), World Resources Institute, 2007 (data is for 2001-2002 and includes CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆ emissions for countries and CO₂, CH₄, N₂O, and F-gases for CA)

Per Capita Electricity Consumption

www.eia.doe.gov/emeu/states/sep_use/total/csv/use_csv

Summary

Public health is the most important policy consideration – especially premature deaths due to PM2.5

California already affected by climate change – future warming threatens water supply and agriculture

Climate change makes ozone standards more difficult to attain – impact on PM2.5 and PM10 is unclear

Greenhouse gas reduction policies

- Adopted: light-duty vehicle standards, energy efficiency measures
- Jan. 1, 2010: low carbon fuel standard, other early actions
- Jan. 1, 2012: cap and trade market, other regulations