Non-technical abatement measures for agricultural emissions

Corjan Brink based on work by various colleagues

Diet changes

- meat consumption ? environmental pollution
 - one of the most polluting parts of our diet
- alternatives with less environmental pollution
 - fish (limited potential, other environmental impacts)
 - novel protein foods (NPFs)
- replacing 40% meat by NPFs in the Netherlands
 - reductions in CH₄ (9%), NH₃ (9%), N₂O (3%) emissions (2030)
 - reduction in land requirements
 - meat more expensive than NPFs? direct savings consumers
- But...
 - welfare cost?
 - implementation? (e.g. tax on meat?)

NTM for NH₃ from agriculture

• Sources of N-deposition in NL (2000)

Assessment Agency

Abatement of NH₃ from agriculture

• deposition NH₃ relatively close to source

deposition from 800kg NH₃ at farm

Abatement of NH₃ from agriculture

- sources of emissions near nature reserves have relatively large impact on biodiversity
- 20% of NH₃ emissions deposited within 1000m
- remaining part contributes to background deposition levels

So...

• NH₃ abatement close to nature reserves most effective

But...

 in the Netherlands background concentration high ⇒ abatement close to nature reserves not sufficient

Exceeding critical loads for N deposition

Netherlands vs. Europe

NH₃ emissions in Europe

Measures for agricultural NH₃ emissions

	Generic reduce emissions and background deposition	Location specific reduce deposition on a specific nature reserve
Technical	 ✓ general rules for manure storage, application, animal houses, etc. 	 ✓ local implementation of technical measures
Non- technical	 ✓ buying up livestock quota 	 ✓ relocation of farms ✓ closure of farms ✓ restrictions on farming within certain areas

Location specific NH₃ abatement

- Options
 - local implementation of technical measures
 - IPPC takes into account local environmental conditions
 - buffer zones (250m) around nature reserves in which economic expansion is restricted
 - relocation or closure of farms

General conclusions

- Non-technical measures (relocation, closure) relatively expensive
- in specific areas they can help to reduce N deposition exceeding critical loads cost-effectively
- location specific abatement more efficient with lower background concentration levels

Cost-effectiveness

• Measure effect:

- kton/yr reduction in emissions
- mol/ha/yr reduction in deposition (average/on specific area)
- ecosystem protection percentage
- Mmol/yr reduction accumulated exceedance

Cost-effectiveness

	technical	technical	non-techn.
	generic	location-spec.	generic
emissions (€/kg/yr)	0.4 – 25 (9.0 avg.)	9.2 (avg.)	3.6
exceedance (€/mol/yr)	0.2 - 4 (1.7 avg.)	1.2 (avg.)	0.4

 cost-effectiveness of relocation in most favourable situations can be as low as ~€0.2/mol/yr

Non-technical vs. technical measures (local)

• Relocation/closure:

- can be cost-effective for farms dominating N-deposition on specific natural areas ? local reduction may amount to 1000 mol/ha/yr
- relocation ? no reduction emissions
- closure more effective than relocation emissions removed

• Technical measures

- location specific implementation of technical measures with high reduction potential more efficient than relocation/closure
- e.g. air scrubbers (reduction $NH_3 > 90\%$; also reduction PM_{10})

Non-technical vs. technical measures (local)

Cost (for average farm)

- relocation €450,000
- closure > €500,000 (based on price livestock quota)
- air scrubber €300,000 (NPV; invest. €100,000-€150,000)

Spatial scale analysis:

- high level of spatial detail required for calculating effect (and cost-effectiveness) of location specific abatement
- studies for the Netherlands:
 - 5x5 km ('96) ? 1x1 km ('01) ? 500x500 m (present)

Implementation

- various difficulties with relocation in NL
 - high level of fragmentation of nature reserves
 - conflicting interests of many stakeholders
 - not all stakeholders involved in decision-making process
 - farmers less willing to relocate than expected
 - existing but unused rights (e.g. for expansion) remain valid
 - governments hesitant to pay for damage due to loss of rights
 - insufficient funds
- Promises for 'deposition tax'?
 - levy tax on contribution of farm to critical load exceedance
 - let farmer opt for relocation, closure, technical measures